Oxidative stress enhances cephalosporin resistance of Enterococcus faecalis through activation of a two-component signaling system.
نویسندگان
چکیده
Enterococcus faecalis is a low-GC Gram-positive bacterium, a normal resident of the gastrointestinal (GI) tract, and an important hospital-acquired pathogen. An important risk factor for hospital-acquired enterococcal infections is prior therapy with broad-spectrum cephalosporins, antibiotics that impair cell wall biosynthesis by inhibiting peptidoglycan cross-linking. Enterococci are intrinsically resistant to cephalosporins; however, environmental factors that modulate cephalosporin resistance have not been described. While searching for the genetic determinants of cephalosporin resistance in E. faecalis, we unexpectedly discovered that oxidative stress, whether from external sources or derived from endogenous metabolism, drives enhanced intrinsic resistance to cephalosporins. A particular source of oxidative stress, H2O2, activates signaling through the CroR-CroS two-component signaling system, a known determinant of cephalosporin resistance in E. faecalis. We find that CroR-CroS is required for adaptation to H2O2 stress and that H2O2 potentiates the activities of cephalosporins against E. faecalis when the CroR-CroS signaling system is nonfunctional. Rather than directly detecting H2O2, our data suggest that the CroR-CroS system responds to cell envelope damage caused by H2O2 exposure in order to promote cell envelope repair and enhanced cephalosporin resistance.
منابع مشابه
Reciprocal Regulation of Cephalosporin Resistance in Enterococcus faecalis
UNLABELLED Antibiotic-resistant enterococci are major causes of hospital-acquired infections and therefore represent a serious public health problem. One well-known risk factor for the acquisition of hospital-acquired enterococcal infections is prior therapy with broad-spectrum cephalosporin antibiotics. Enterococci can proliferate in patients undergoing cephalosporin therapy due to intrinsic c...
متن کاملNutritional control of antibiotic resistance via an interface between the phosphotransferase system and a two-component signaling system.
Enterococci are ubiquitous inhabitants of the gastrointestinal (GI) tract. However, antibiotic-resistant enterococci are also major causes of hospital-acquired infections. Enterococci are intrinsically resistant to cephalosporins, enabling growth to abnormally high densities in the GI tract in patients during cephalosporin therapy, thereby promoting dissemination to other sites where they cause...
متن کاملMurAA is required for intrinsic cephalosporin resistance of Enterococcus faecalis.
Enterococcus faecalis is a low-GC Gram-positive bacterium that is intrinsically resistant to cephalosporins, antibiotics that target cell wall biosynthesis. To probe the mechanistic basis for intrinsic resistance, a library of transposon mutants was screened to identify E. faecalis strains that are highly susceptible to ceftriaxone, revealing a transposon mutant with a disruption in murAA. murA...
متن کاملOxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans.
Caenorhabditis elegans has recently been developed as a model for microbial pathogenesis, yet little is known about its immunological defenses. Previous work implicated insulin signaling in mediating pathogen resistance in a manner dependent on the transcriptional regulator DAF-16, but the mechanism has not been elucidated. We present evidence that C. elegans, like mammalian phagocytes, produce...
متن کاملOxidative stress enhances the expression of sulfur assimilation genes: preliminary insights on the Enterococcus faecalis iron-sulfur cluster machinery regulation
The Firmicutes bacteria participate extensively in virulence and pathological processes. Enterococcus faecalis is a commensal microorganism; however, it is also a pathogenic bacterium mainly associated with nosocomial infections in immunocompromised patients. Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups involved in diverse biological processes, whose in vivo formation requires se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 59 1 شماره
صفحات -
تاریخ انتشار 2015